Transformer fundamentals
 
Loading...
Searching...
No Matches
working_gpt.FeedFoward Class Reference

a simple linear layer followed by a non-linearity More...

Inheritance diagram for working_gpt.FeedFoward:

Public Member Functions

 __init__ (self, n_embd)
 
 forward (self, x)
 

Public Attributes

 net
 

Detailed Description

a simple linear layer followed by a non-linearity

Definition at line 126 of file working_gpt.py.

Constructor & Destructor Documentation

◆ __init__()

working_gpt.FeedFoward.__init__ ( self,
n_embd )

Definition at line 129 of file working_gpt.py.

129 def __init__(self, n_embd):
130 super().__init__()
131 self.net = nn.Sequential(
132 nn.Linear(n_embd, 4 * n_embd),
133 nn.ReLU(),
134 nn.Linear(4 * n_embd, n_embd),
135 nn.Dropout(dropout),
136 )
137

References __init__().

Referenced by __init__().

Member Function Documentation

◆ forward()

working_gpt.FeedFoward.forward ( self,
x )

Definition at line 138 of file working_gpt.py.

138 def forward(self, x):
139 return self.net(x)
140
141

References net.

Member Data Documentation

◆ net

working_gpt.FeedFoward.net
Initial value:
= nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)

Definition at line 131 of file working_gpt.py.

Referenced by forward().


The documentation for this class was generated from the following file: